3.11.65 \(\int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx\) [1065]

3.11.65.1 Optimal result
3.11.65.2 Mathematica [C] (verified)
3.11.65.3 Rubi [A] (verified)
3.11.65.4 Maple [C] (verified)
3.11.65.5 Fricas [B] (verification not implemented)
3.11.65.6 Sympy [F(-1)]
3.11.65.7 Maxima [F]
3.11.65.8 Giac [F]
3.11.65.9 Mupad [B] (verification not implemented)

3.11.65.1 Optimal result

Integrand size = 20, antiderivative size = 331 \[ \int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx=\frac {\sqrt [4]{-b-\sqrt {b^2-4 a c}} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt {b^2-4 a c}}-\frac {\sqrt [4]{-b+\sqrt {b^2-4 a c}} \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt {b^2-4 a c}}+\frac {\sqrt [4]{-b-\sqrt {b^2-4 a c}} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt {b^2-4 a c}}-\frac {\sqrt [4]{-b+\sqrt {b^2-4 a c}} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \sqrt {b^2-4 a c}} \]

output
1/2*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(-b-(-4* 
a*c+b^2)^(1/2))^(1/4)*2^(3/4)/c^(1/4)/(-4*a*c+b^2)^(1/2)+1/2*arctanh(2^(1/ 
4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(-b-(-4*a*c+b^2)^(1/2))^ 
(1/4)*2^(3/4)/c^(1/4)/(-4*a*c+b^2)^(1/2)-1/2*arctan(2^(1/4)*c^(1/4)*x^(1/2 
)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(-b+(-4*a*c+b^2)^(1/2))^(1/4)*2^(3/4)/c^( 
1/4)/(-4*a*c+b^2)^(1/2)-1/2*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^ 
2)^(1/2))^(1/4))*(-b+(-4*a*c+b^2)^(1/2))^(1/4)*2^(3/4)/c^(1/4)/(-4*a*c+b^2 
)^(1/2)
 
3.11.65.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.05 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.14 \[ \int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx=\frac {1}{2} \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {\log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}}{b+2 c \text {$\#$1}^4}\&\right ] \]

input
Integrate[x^(3/2)/(a + b*x^2 + c*x^4),x]
 
output
RootSum[a + b*#1^4 + c*#1^8 & , (Log[Sqrt[x] - #1]*#1)/(b + 2*c*#1^4) & ]/ 
2
 
3.11.65.3 Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 330, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1435, 1710, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {x^2}{c x^4+b x^2+a}d\sqrt {x}\)

\(\Big \downarrow \) 1710

\(\displaystyle 2 \left (\frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d\sqrt {x}+\frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d\sqrt {x}\right )\)

\(\Big \downarrow \) 756

\(\displaystyle 2 \left (\frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}\right )+\frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}\right )\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )+\frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {1}{2} \left (\frac {b}{\sqrt {b^2-4 a c}}+1\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )+\frac {1}{2} \left (1-\frac {b}{\sqrt {b^2-4 a c}}\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )\right )\)

input
Int[x^(3/2)/(a + b*x^2 + c*x^4),x]
 
output
2*(((1 + b/Sqrt[b^2 - 4*a*c])*(-(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sq 
rt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4))) 
- ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/ 
4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4))))/2 + ((1 - b/Sqrt[b^2 - 4*a*c] 
)*(-(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^( 
1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*S 
qrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 
4*a*c])^(3/4))))/2)
 

3.11.65.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1710
Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(d^n/2)*(b/q + 1)   Int[(d*x)^(m 
- n)/(b/2 + q/2 + c*x^n), x], x] - Simp[(d^n/2)*(b/q - 1)   Int[(d*x)^(m - 
n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] & 
& NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GeQ[m, n]
 
3.11.65.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.06 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.14

method result size
derivativedivides \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\textit {\_R}^{4} \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{2}\) \(45\)
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\textit {\_R}^{4} \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}\right )}{2}\) \(45\)

input
int(x^(3/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
1/2*sum(_R^4/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))
 
3.11.65.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2157 vs. \(2 (253) = 506\).

Time = 0.28 (sec) , antiderivative size = 2157, normalized size of antiderivative = 6.52 \[ \int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
integrate(x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
1/2*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6* 
c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 
16*a^2*c^3)))*log((b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*sqrt(sqrt(1/2)*sqrt(- 
(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a 
^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^ 
2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5) + sqrt(x)) - 1/2*sqrt(sqrt 
(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^ 
4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3))) 
*log(-(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*sqrt(sqrt(1/2)*sqrt(-(b + (b^4*c 
- 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 
 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4 
*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5) + sqrt(x)) + 1/2*sqrt(-sqrt(1/2)*sqrt( 
-(b + (b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48* 
a^2*b^2*c^4 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log((b^4*c 
 - 8*a*b^2*c^2 + 16*a^2*c^3)*sqrt(-sqrt(1/2)*sqrt(-(b + (b^4*c - 8*a*b^2*c 
^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5 
))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a 
^2*b^2*c^4 - 64*a^3*c^5) + sqrt(x)) - 1/2*sqrt(-sqrt(1/2)*sqrt(-(b + (b^4* 
c - 8*a*b^2*c^2 + 16*a^2*c^3)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 
 - 64*a^3*c^5))/(b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)))*log(-(b^4*c - 8*a*...
 
3.11.65.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx=\text {Timed out} \]

input
integrate(x**(3/2)/(c*x**4+b*x**2+a),x)
 
output
Timed out
 
3.11.65.7 Maxima [F]

\[ \int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx=\int { \frac {x^{\frac {3}{2}}}{c x^{4} + b x^{2} + a} \,d x } \]

input
integrate(x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
integrate(x^(3/2)/(c*x^4 + b*x^2 + a), x)
 
3.11.65.8 Giac [F]

\[ \int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx=\int { \frac {x^{\frac {3}{2}}}{c x^{4} + b x^{2} + a} \,d x } \]

input
integrate(x^(3/2)/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
integrate(x^(3/2)/(c*x^4 + b*x^2 + a), x)
 
3.11.65.9 Mupad [B] (verification not implemented)

Time = 14.76 (sec) , antiderivative size = 8229, normalized size of antiderivative = 24.86 \[ \int \frac {x^{3/2}}{a+b x^2+c x^4} \, dx=\text {Too large to display} \]

input
int(x^(3/2)/(a + b*x^2 + c*x^4),x)
 
output
atan(((x^(1/2)*(512*a^3*c^4 - 256*a^2*b^2*c^3) + (-(b^5 + (-(4*a*c - b^2)^ 
5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(32*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c 
^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(1/4)*(((-(b^5 + (-(4*a*c - b^2)^ 
5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(32*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c 
^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(1/4)*(524288*a^5*c^7 - 8192*a^2* 
b^6*c^4 + 98304*a^3*b^4*c^5 - 393216*a^4*b^2*c^6) - x^(1/2)*(65536*a^4*b*c 
^6 + 4096*a^2*b^5*c^4 - 32768*a^3*b^3*c^5))*(-(b^5 + (-(4*a*c - b^2)^5)^(1 
/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(32*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c^2 + 
96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(3/4) + 2048*a^3*b*c^4 - 512*a^2*b^3*c 
^3))*(-(b^5 + (-(4*a*c - b^2)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(32*(b^ 
8*c + 256*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(1/ 
4)*1i + (x^(1/2)*(512*a^3*c^4 - 256*a^2*b^2*c^3) - (-(b^5 + (-(4*a*c - b^2 
)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(32*(b^8*c + 256*a^4*c^5 - 16*a*b^6 
*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(1/4)*(((-(b^5 + (-(4*a*c - b^2 
)^5)^(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(32*(b^8*c + 256*a^4*c^5 - 16*a*b^6 
*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(1/4)*(524288*a^5*c^7 - 8192*a^ 
2*b^6*c^4 + 98304*a^3*b^4*c^5 - 393216*a^4*b^2*c^6) + x^(1/2)*(65536*a^4*b 
*c^6 + 4096*a^2*b^5*c^4 - 32768*a^3*b^3*c^5))*(-(b^5 + (-(4*a*c - b^2)^5)^ 
(1/2) + 16*a^2*b*c^2 - 8*a*b^3*c)/(32*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c^2 
+ 96*a^2*b^4*c^3 - 256*a^3*b^2*c^4)))^(3/4) + 2048*a^3*b*c^4 - 512*a^2*...